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A Beautiful Mind
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A Beautiful Mind
⋄ John Nash (1928–2015) wrote a 28-page thesis on non-cooperative games
⋄ Awarded the Nobel Prize in Economics in 1994

⋄ Nash’s theory in the movie (which is not an example of Nash equilibrium)
⋄ https://www.youtube.com/watch?v=bbNMTbcuitA
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A variant of Prisoner’s Dilemma

Figure: Golden Balls: Split or Steal

⋄ An amount $J is on the table.
⋄ If both Split: fair share.
⋄ If one Steals: stealer gets all, splitter gets nothing.
⋄ If both Steal: both walk away with nothing.
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Golden Balls: Split or Steal (A vs B)

B: Split B: Steal
A: Split

(
J
2 , J

2
) (

0, J
)

A: Steal
(
J, 0

) (
0, 0

)
⋄ If B chooses Split: A gets J by Steal vs. J/2 by Split ⇒ A prefers Steal.
⋄ If B chooses Steal: A gets 0 whether Split or Steal ⇒ indifferent.
⋄ Thus B should steal whatever A does.
⋄ By symmetry, A should also steal.
⋄ Conclusion: Both of them should steal.
⋄ The strategy profile (Steal, Steal) is a Nash equilibrium
⋄ Note that it is not the “social optimum”: (Split, Split) yields ( J

2 , J
2 ).
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Nash equilibrium: Two-player, single-period game

⋄ Two players with action sets A1 and A2.

⋄ A strategy profile is α = (α1, α2) ∈ A1 × A2.

⋄ Let J1, J2 : A1 × A2 → R be the players’ costs (to be minimized).

⋄ A strategy profile α∗ is a Nash equilibrium iff

J1(α∗
1, α∗

2) ≤ J1(α1, α∗
2) ∀ α1 ∈ A1,

J2(α∗
1, α∗

2) ≤ J2(α∗
1, α2) ∀ α2 ∈ A2.

⋄ Interpretation: at α∗, neither player can improve their outcome by unilaterally
deviating
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n-player, single-period game

⋄ Players i ∈ {1, . . . , n} with action sets Ai

⋄ Notation. For any player i, write

α−i = (α1, . . . , αi−1, αi+1, . . . , αn) ∈
∏
j ̸=i

Aj

⋄ Cost functions: Ji :
∏n

j=1 Aj → R, for i = 1, . . . , n.

⋄ A strategy profile α∗ ∈
∏n

j=1 Aj is a Nash equilibrium if for each
i = 1, . . . , n,

Ji(α∗
i , α∗

−i) ≤ Ji(αi, α∗
−i) ∀ αi ∈ Ai.

⋄ Similar definitions apply to multi-period/repeated games.
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Continuous-time stochastic games
⋄ Time horizon: [0, T ], where T ∈ (0, ∞).

⋄ Strategy: Each player i ∈ {1, . . . , n} chooses their strategy αi = (αi
t)t∈[0,T ]

among Ai, a set of feasible actions (a.k.a. admissible controls)

⋄ State dynamics: Each player’s state is given by

dXi
t = b

(
Xi

t , µn
t , αi

t

)
dt + dW i

t ,

where µn
t = 1

n

∑n
j=1 δXj

t
is the empirical measure of all players’ states.

⋄ Cost functions: Each player tries to minimize

Ji(α1, . . . , αn) = E

[ ∫ T

0
f
(
Xi

t , µn
t , αi

t

)
dt︸ ︷︷ ︸

running cost

+ g
(
Xi

T , µn
T

)︸ ︷︷ ︸
terminal cost

]
.

⋄ A strategy profile α∗ = (α1, . . . , αn) is a Nash equilibrium if for each i,

Ji

(
αi,∗, α−i,∗)

≤ Ji

(
αi, α−i,∗)

, ∀αi ∈ Ai

⋄ Issue: Very difficult to compute Nash equilibria even if n is reasonably large!
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Mean field game (MFG) paradigm

⋄ Idea: A “typical” or “representative” player interacts with a continuum of
others only through the population state distribution µt.

⋄ Fix a measure flow µ = (µt)t∈[0,T ] representing a continuum of agents’ state
process

⋄ Solve the optimal control problem faced by a “typical” playerα∗ = arg min
α

E

[ ∫ T

0
f
(
Xt, µt, αt

)
dt + g

(
XT , µT

)]
,

dXt = b
(
Xt, µt, αt

)
dt + dWt.

⋄ Fixed point problem: find µ such that Law(Xα∗

t ) = µt for all t ∈ [0, T ].

⋄ Any pair (µ, α∗) satisfying this is an MFG equilibrium.
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Nash’s existence proof of equilibrium in n-person games
⋄ Uses Kakutani’s fixed point theorem.
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The analytic PDE approach to mean field games
⋄ For a fixed measure flow µ = (µt), the value function

V µ(t, x) = inf
α∈A

E

[ ∫ T

t

f
(
Xs, µs, αs

)
ds + g

(
XT , µT

) ∣∣∣ Xt = x

]

solves the (backward in time) Hamilton–Jacobi–Bellman equation:∂tV
µ(t, x) + inf

α

{
f(x, µt, α) + ∇V µ(t, x)·b(x, µt, α) + 1

2 ∆V µ(t, x)
}

= 0,

V µ(T, x) = g(x, µT ).

⋄ The fixed point step is implemented by requiring µ = (µt) solves the (forward)
Fokker–Planck equation:

∂tµt = 1
2 ∆µt − ∇ ·

(
b
(
x, µt, αµ

)
µt

)
.

⋄ This is a system of strongly coupled nonlinear PDEs!
⋄ There is also a popular probabilistic approach using forward-backward

stochastic differential equations (FBSDEs).
11 / 14



Key progresses over the years
Theory

⋄ Existence of MFG equilibria.
⋄ Uniqueness in monotone settings.
⋄ Approximate Nash equilibria for N -player games from MFG limit.
⋄ Convergence of n-player games to MFG limit
⋄ Computation guarantees: convergence of iterative schemes.
⋄ ...

Applications
⋄ Systemic risk and interbank lending.
⋄ Flocking and herding models in biology
⋄ Crowd motion and congestion.
⋄ Algorithmic trading and execution.
⋄ Cybersecurity, bank runs
⋄ ...

Many active areas/open problems!
Read some prerequisites on the next page and come talk to me.
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Prerequisite knowledge

⋄ Foundational
⋄ Probability (e.g., Probability with Martingales by Williams).

⋄ Stochastic processes: Brownian motion, SDEs, stochastic calculus (e.g.
Brownian Motion and Stochastic Calculus by Karatzas and Shreve).

⋄ More advanced
⋄ McKean–Vlasov equations, interacting particle systems, mean field games

(e.g. Mean Field Games and Interacting Particle Systems by Daniel
Lacker, Probabilistic Theory of Mean Field Games with Applications by
René Carmona and François Delarue)

⋄ Stochastic control theory (e.g. Continuous-Time Stochastic Control and
Optimization with Financial Applications by Huyên Pham)

13 / 14



Thank you very much for your
attention!
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