

An invitation to the calculus of variations

Mike Novack

September 24, 2025

Outline

1 What is the calculus of variations?

2 Some current projects

3 Food for thought

What is the calculus of variations?

Calculus of variations = studying the **minimization** of **functionals**

- **Functional:** a function whose input is a function and output is a number
 - ▶ $f \mapsto \int_{\Omega} f \, dx$ is a functional.
 - ★ Input: functions (which are integrable on Ω)
 - ★ Output: the integral of f over Ω

What is the calculus of variations?

Calculus of variations = studying the **minimization** of **functionals**

- **Functional:** a function whose input is a function and output is a number

- ▶ $f \mapsto \int_{\Omega} f \, dx$ is a functional.
 - ★ Input: functions (which are integrable on Ω)
 - ★ Output: the integral of f over Ω

- An example problem

- ▶ Fix a domain Ω and a function $h : \partial\Omega \rightarrow \mathbb{R}$. (data)
- ▶ Minimize

$$L[g] := \int_{\Omega} |\nabla g(x)|^2 \, dx \quad \text{(functional)}$$

among

$$g : \Omega \rightarrow \mathbb{R} \text{ s.t. } g = h \text{ on } \partial\Omega \quad \text{(constraints)}$$

Calculus vs. calculus of variations

Calculus

Minimize

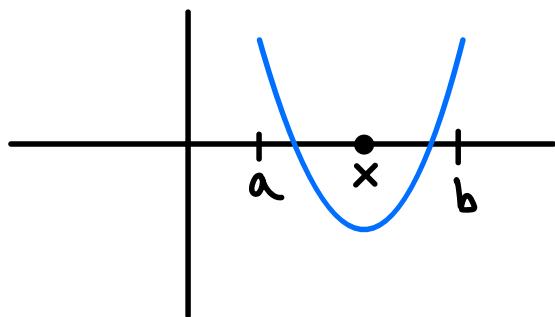
$$f(x)$$

among

$$x \text{ s.t. } a \leq x \leq b.$$

To solve:

- ① f continuous, $[a, b]$ closed and bounded \implies min. exists
- ② Find x s.t. $f'(x) = 0$
- ③ $f'' > 0$ on (a, b) \implies sol. to step 2 is the minimizer



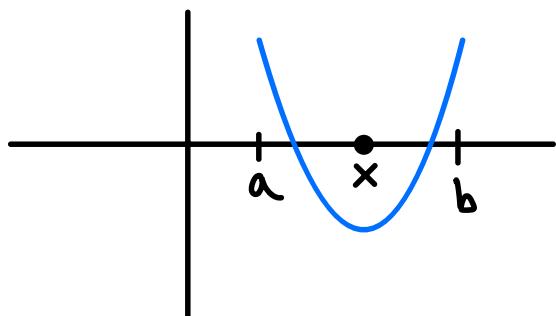
Calculus vs. calculus of variations

Calculus

Minimize
 $f(x)$
among
 x s.t. $a \leq x \leq b$.

To solve:

- ① f continuous, $[a, b]$ closed and bounded \implies min. exists
- ② Find x s.t. $f'(x) = 0$
- ③ $f'' > 0$ on (a, b) \implies sol. to step 2 is the minimizer



Calculus of variations

Minimize
 $L[g] := \int_{\Omega} |\nabla g|^2$
among
 g s.t. $g = h$ on $\partial\Omega$.

To solve:

- ① Lower-semicontinuity, compactness \implies min. exists
- ② Find g s.t. $L'[g] = \Delta g = 0$
- ③ $L'' > 0$ \implies sol. to step 2 is the minimizer

Calculus vs. calculus of variations

Calculus

Minimize
 $f(x)$
among
 x s.t. $a \leq x \leq b$.

To solve:

- ① f continuous, $[a, b]$ closed and bounded \implies min. exists
- ② Find x s.t. $f'(x) = 0$
- ③ $f'' > 0$ on (a, b) \implies sol. to step 2 is the minimizer

Calculus of variations

Minimize
 $L[g] := \int_{\Omega} |\nabla g|^2$
among
 g s.t. $g = h$ on $\partial\Omega$.

To solve:

- ① Lower-semicontinuity, compactness \implies min. exists
- ② Find g s.t. $L'[g] = \Delta g = 0$
- ③ $L'' > 0$ \implies sol. to step 2 is the minimizer

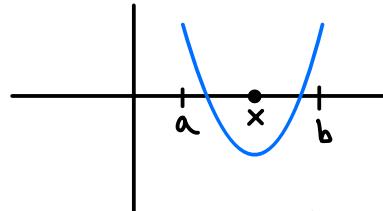
Calculus vs. calculus of variations

Calculus

Minimize
 $f(x)$
among
 x s.t. $a \leq x \leq b$.

To solve:

- ① f continuous, $[a, b]$ closed and bounded \implies min. exists
- ② Find x s.t. $f'(x) = 0$
- ③ $f'' > 0$ on (a, b) \implies sol. to step 2 is the minimizer



Calculus of variations

Minimize
 $L[g] := \int_{\Omega} |\nabla g|^2$
among
 g s.t. $g = h$ on $\partial\Omega$.

To solve:

- ① Lower-semicontinuity, compactness \implies min. exists
- ② Find g s.t. $L'[g] = \Delta g = 0$
- ③ $L'' > 0$ \implies sol. to step 2 is the minimizer

- Calculus in an infinite dimensional space is harder!

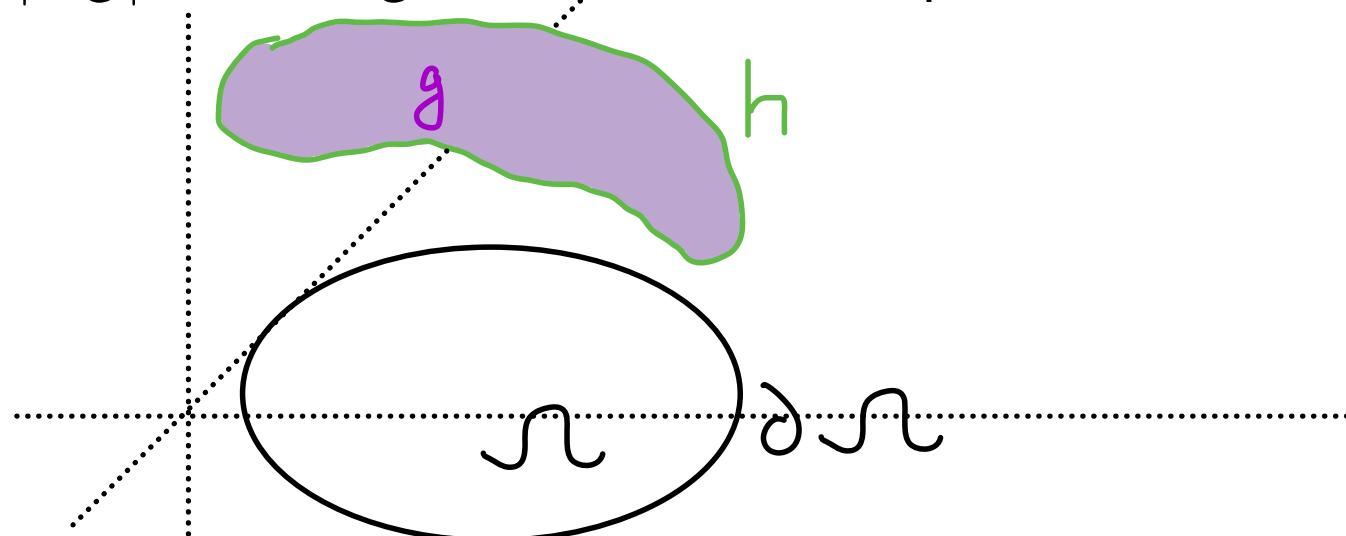
- ▶ This caused a gap in Riemann's original proof of the Riemann mapping theorem.

Where do such problems arise?

Many physical systems exhibit “energy-minimizing” configurations.

Nature is lazy!

- Minimize $\int |\nabla g|^2 dx$ s.t. $g = h$ on $\partial\Omega \leftrightarrow$ shape of elastic membrane



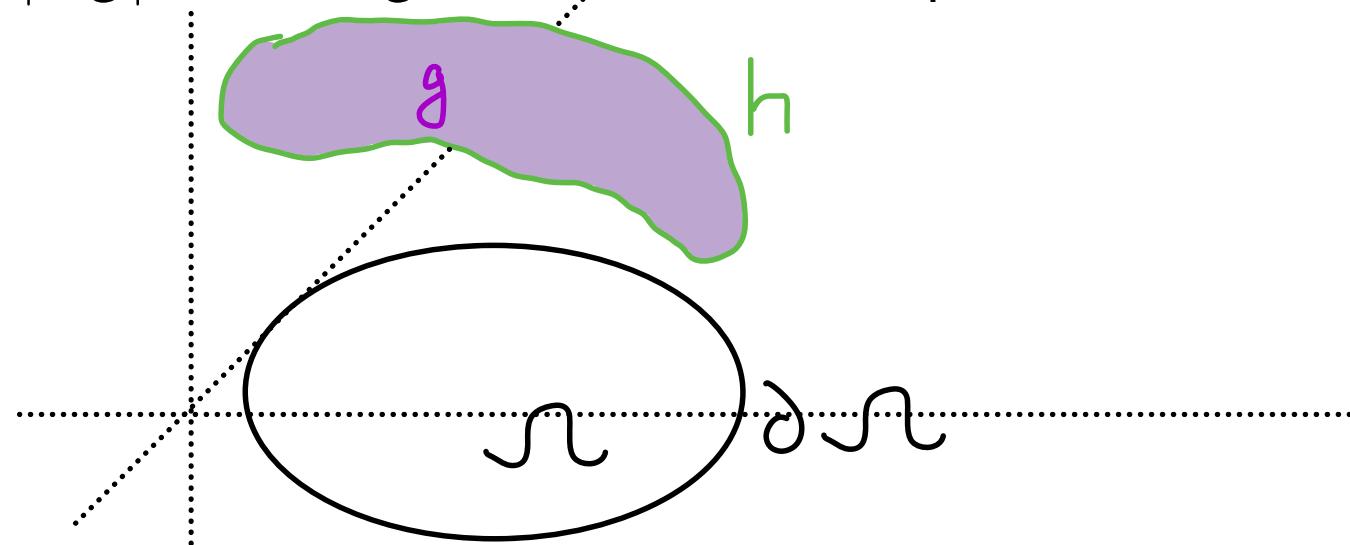
- Also relevant in electrostatics, heat conduction, etc. . .

Where do such problems arise?

Many physical systems exhibit “energy-minimizing” configurations.

Nature is lazy!

- Minimize $\int |\nabla g|^2 dx$ s.t. $g = h$ on $\partial\Omega \leftrightarrow$ shape of elastic membrane



- Also relevant in electrostatics, heat conduction, etc. . .
- Calculus of variations also arises in: structural optimization, control theory, image processing, physics, economics, machine learning, and more. . .

Outline

1 What is the calculus of variations?

2 Some current projects

3 Food for thought

Some current projects

Mostly arising from materials science/physics. . .

Mostly involve minimizing **geometric quantities** (e.g. surface area)

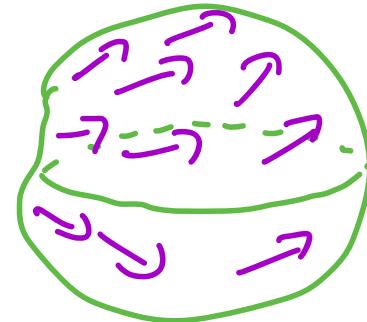
Some current projects

Mostly arising from materials science/physics. . .

Mostly involve minimizing **geometric quantities** (e.g. surface area)

- Liquid crystals: flows \sim liquid, crystalline structure \sim solid
 - ▶ **Project:** Liquid crystals deposited onto a surface. . . existence, shape?

$$\text{Energy} = \int_{\partial\Omega} \sigma + |\nabla \vec{n}|^2 dS$$



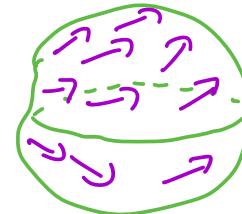
Some current projects

Mostly arising from materials science/physics. . .

Mostly involve minimizing **geometric quantities** (e.g. surface area)

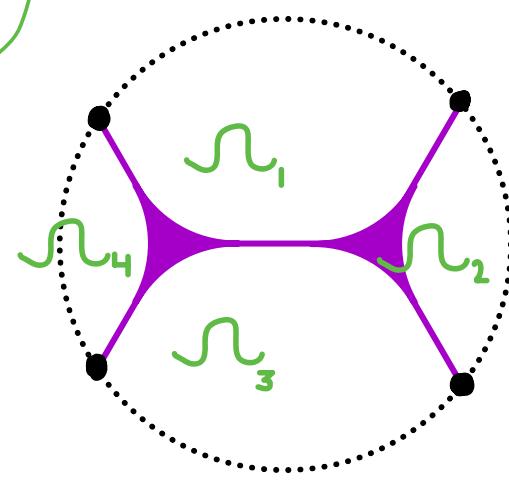
- Liquid crystals: flows \sim liquid, crystalline structure \sim solid
 - ▶ **Project:** Liquid crystals deposited onto a surface. . . existence, shape?

$$\text{Energy} = \int_{\partial\Omega} \sigma + |\nabla \vec{n}|^2 dS$$



- Thin films
 - ▶ **Project:** Dynamics of foams

$$\text{Energy} = \sum_i \text{Surface areas of } \Omega_i$$



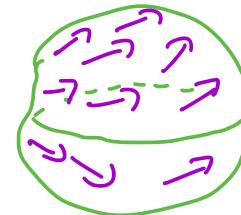
Some current projects

Mostly arising from materials science/physics. . .

Mostly involve minimizing **geometric quantities** (e.g. surface area)

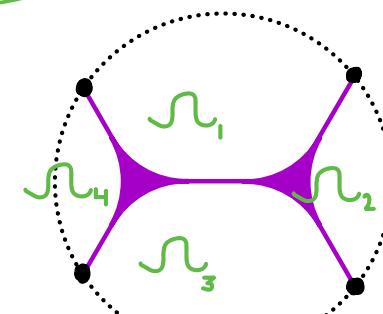
- Liquid crystals: flows \sim liquid, crystalline structure \sim solid
 - ▶ **Project:** Liquid crystals deposited onto a surface. . . existence, shape?

$$\text{Energy} = \int_{\partial\Omega} \sigma + |\nabla \vec{n}|^2 dS$$

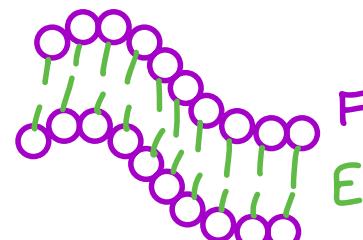


- Thin films
 - ▶ **Project:** Dynamics of foams

$$\text{Energy} = \sum_i \text{Surface areas of } \Omega_i$$



- Bilayer membranes
 - ▶ **Project:** Shape of minimizers



$$\text{Energy} = \text{Surface area of } E + \text{"Transport cost" of } F \text{ onto } E$$

What kind of math is involved?

- **Analysis**
 - ▶ Partial differential equations
 - ▶ (Geometric) measure theory
- **What would you need to know/learn?**
- Class in measure theory e.g. 500
- Class in PDE's e.g. 512
- Reading course with me - e.g. first half of the book *Sets of finite perimeter and geometric variational problems*

What kind of math is involved?

- **Analysis**
 - ▶ Partial differential equations
 - ▶ (Geometric) measure theory
- **What would you need to know/learn?**
- Class in measure theory e.g. 500
- Class in PDE's e.g. 512
- Reading course with me - e.g. first half of the book *Sets of finite perimeter and geometric variational problems*
- Problems may require learning new things - e.g. interval arithmetic (rigorous computation with error estimates).

Outline

1 What is the calculus of variations?

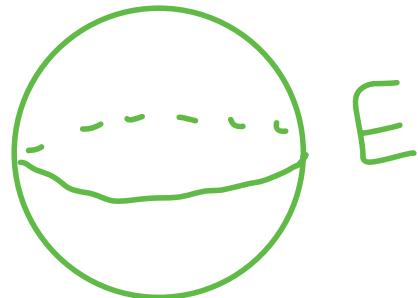
2 Some current projects

3 Food for thought

A closing example

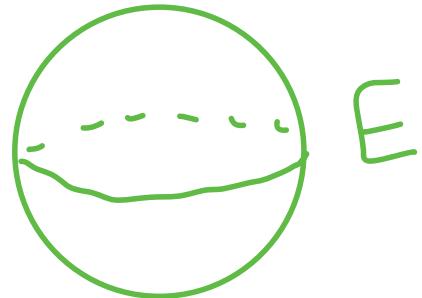
- Gamow's liquid drop model for atomic nuclei
 - ▶ George Gamow (1920's) modelled protons/neutrons as an incompressible, uniformly charged fluid
 - ▶ Model explained nuclear fission in terms of a certain instability
 - ▶ Among sets E with fixed volume m , minimize

$$\text{Surface area of } \partial E + \frac{1}{8\pi} \int_E \int_E \frac{1}{|x - y|} dx dy$$



A closing example

- Gamow's liquid drop model for atomic nuclei
 - ▶ George Gamow (1920's) modelled protons/neutrons as an incompressible, uniformly charged fluid
 - ▶ Model explained nuclear fission in terms of a certain instability
 - ▶ Among sets E with fixed volume m , minimize

$$\text{Surface area of } \partial E + \frac{1}{8\pi} \int_E \int_E \frac{1}{|x - y|} dx dy$$


- What's known
 - ▶ Balls are unique minimizers if $0 < m < m_0$ (uses GMT)
 - ▶ Non-existence of minimizers for $m > m_1$
- What's unknown: does $m_0 = m_1$?

Conclusion

Read and come talk to me!

- Preface/prologue to *Variational Principles in Classical Mechanics*
 - ▶ Connection between calculus of variations and physics/mechanics
- *Energy driven pattern formation*
 - ▶ Calculus of variations as a paradigm in materials science
- *The regularity for the area functional in geometric measure theory*
 - ▶ History/current directions in GMT
- *An old problem resurfaces nonlocally: Gamow's liquid drops inspire today's research and applications*
 - ▶ Survey paper on liquid drop model

Conclusion

Read and come talk to me!

- Preface/prologue to *Variational Principles in Classical Mechanics*
 - ▶ Connection between calculus of variations and physics/mechanics
- *Energy driven pattern formation*
 - ▶ Calculus of variations as a paradigm in materials science
- *The regularity for the area functional in geometric measure theory*
 - ▶ History/current directions in GMT
- *An old problem resurfaces nonlocally: Gamow's liquid drops inspire today's research and applications*
 - ▶ Survey paper on liquid drop model

THANK YOU!