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My work in Discrete Mathematics



Current Student Research

Two recently defended PhD theses:
Random and Fractional Perspectives On DP-coloring of
Graphs by Daniel Dominik.
On Spectral and Algorithmic Problems in Graph Theory by
Bahar Kudarzi.

Network design for equitable allocation of resources with
Alaittin Kirtisoglu.
List Coloring of Graphs with Leonardo Marciaga.
Enumerative and Extremal problems on DP-coloring of
graphs with Michelle Kang, and with Anne Ullyot.



Conflict-free Allocation of Scarce Resources

Allocation of courses (limited resource) to timeslots
(entities) so that courses with same instructor (conflict) are
given different timeslots.

Allocation of classrooms (limited resource) to courses
(entities) so that courses with overlapping-time (conflict)
are given different rooms.



Conflict-free Allocation of Scarce Resources

Allocation of classrooms (limited resource) to courses
(entities) so that courses with overlapping-time (conflict)
are given different rooms.

Allocation of radio channels (limited resource) to radio
stations (entities) so that stations with proximity
interference (conflict) are given different channels.

Allocation of colors (limited resource) to regions (entities)
in a map so that regions with common boundary (conflict)
are given different colors.

Such optimization problems are studied as
“coloring” problems in Graph Theory, the mathematical
theory of structures underlying networks.



Coloring a Graph

Entities ↔ Vertices.
Conflicts ↔ Edges.

Color vertices so that any
vertices with an edge between
them must get different colors.

Resources ↔ Colors.

Given a graph G and a number k , we want to know if there is at
least one such coloring of G using upto k colors.



A More General Perspective

Graph G

{1,2} {1,2}

{1,2}{1,2}

Colors for G Cover for G

In the cover of G, vertices correspond to the available
colors for G, and edges correspond to conflicts between
those colors based on edges of G.



A More General Perspective

Graph G A Cover for G Another Cover for G

In the cover of G, vertices correspond to the available
colors for G, and edges correspond to conflicts between
those colors based on edges of G.



A More General Perspective

A topological aside:

What we are informally calling cover of a graph, can be
formally defined in the language of covering map. A graph
is a topological space, a one-dimensional simplicial
complex, and covering maps can be defined and studied
for graphs.

A surjective map ϕ : V (H) → V (G) where G, H are graphs is a
covering map if for every x ∈ V (H), the neighbor set NH(x) is
mapped bijectively to NG(ϕ(x)). When such a mapping exists
and is k -to-1, we say that H is a k -lift, or k -fold cover of G.

Lifts of graphs have been studied in algebraic/ topological graph
theory since 1980s (see Godsil & Royle, Algebraic Graph Thry);
and in random graph theory since 2000 (see seminal papers of
Linial).



A More General Perspective

Graph G A Cover for G Another Cover for G

A cover of G can be expressed with a permutation on each
edge of G. The permutation models the conflict betwwen
those colors (resources).



S-labeled Graphs and Coloring

Jin, Wang, Zhu (2019) (although these ideas go back to
1990s in topology and topological graph theory):

Let A be a finite set of colors, |A| = k , and S ⊆ SA be a
subset of the permutations of A.

An S-labeling of G is a pair (D, σ) consisting of an
orientation D of G and an edge labeling σ : E(D) → S.

An S-k -coloring of (D, σ) is κ : V (G) → A such that for
each edge (u, v) ∈ E(D) if π = σ(u, v) then
π(κ(u)) ̸= κ(v).



A Poset of (notions of) Graph Colorings

Coloring of S-labeled graphs is a common generalization
of many well studied notions of colorings.



A Poset of (notions of) Graph Colorings

Coloring of S-labeled graphs is a common generalization
of many well studied notions of colorings.
S = {idA} gives classical coloring. Introduced in 1850s.
S = L, linear permutations, gives Signed-coloring.
Introduced in 1930s with many applications in context of
psychological models, root systems, Ising model, etc.
Signed Zk -coloring.
Group Zk -coloring.
Coloring of Gain graphs.
S = SA gives DP-coloring. Introduced in 2015 and widely
studied since then.



A Poset of (notions of) Graph Colorings
S = {idA} gives classical coloring. Introduced in 1850s.
S = L, linear permutations, gives Signed-coloring.
Introduced in 1930s with many applications in context of
psychological models, root systems, Ising model, etc.
S = SA gives DP-coloring. Introduced in 2015 and widely
studied since then.

Any choice of subset of permutations S ⊆ SA leads to a
notion of coloring.

The subset relation over the symmetric group, induces a
partial order on all these notions of coloring with the DP
coloring as the unique maximal element and the classical
coloring as a minimal element.
In fact, it’s a distributive lattice of notions of colorings.



Four Colors for the World Map

(c) Wikimedia



Coloring a Planar Graph

(c) Wikimedia



The Origins of Graph Coloring

Francis Guthrie (October 23, 1852): Four colors suffice for
any planar graph?
Frederick Guthrie (1852): Asked his professor Augustus
De Morgan.
De Morgan (1852) enquired with William Hamilton.
Arthur Cayley presented it to the London Mathematical
Society (LMS).
Kempe (1879) published a proof claiming to solve it.
Honored as Fellow of the Royal Society and elected
President of LMS.
Heawood (1890) found an error in Kempe’s proof.
The fixed proof showed: Five colors suffice for any planar
graph.



Counting the number of colorings

Birkhoff (1912): Chromatic Polynomial, P(G, k), the
number of colorings of G using k colors.
Four Color Conjecture (1852): P(G,4) > 0 for every planar
graph G.
Five Color Theorem (Kempe (1879), Heawood (1890)):
P(G,5) > 0 for every planar graph G.

Birkhoff and Lewis (1946) conjectured:
For any planar graph G,
P(G, k) ≥ k(k − 1)(k − 2)(k − 3)n−3 for all real numbers
k ≥ 4.

They proved this is true for k ≥ 5, thus giving exponentially
many 5-colorings of planar graphs: P(G,5) > 2n.



More progress and more questions
Grötzsch (1959): P(G,3) > 0, for any triangle-free planar
graph.

Appel and Haken (1976): Four Color Theorem!
P(G,4) > 0 for every planar graph G.

Vizing (1975), Erdös, Rubin, and Taylor (1979): Introduced
List Coloring. Instead of same colors for each vertex,
vertices are assigned lists of (possibly different) colors.
Kostochka and Sidorenko (1990): List Color Function,
Pℓ(G, k), the guaranteed number of list colorings of G, no
matter which lists of k -colors are available for each vertex.
Pℓ(G, k) ≤ P(G, k).

Thomassen (1995): Pℓ(G,5) > 0 for any planar graph G.



Exponentially Many Colorings of Planar Graphs!

The history of coloring of planar graphs and its subfamilies,
is intertwined with the related conjectures on existence of
exponentially many such colorings going back at the least
to Birkhoff’s and Whitney’s works in 1930s.



Exponentially Many Colorings of Planar Graphs!

Birkhoff and Lewis (1946): P(G,5) > 2n.
Thomassen (2007): Pℓ(G,5) > 2n/9.

Since 1990s, there has been much work done on showing
that planar graphs and their subfamilies have exponentially
many list k -colorings for appropriate k ∈ {3,4,5}.

These proofs are typically intricate topological arguments
specialized to the family of planar graphs under
consideration.

Can we unify these results and arguments in a systematic
way?



A Poset of Graph Colorings
S = {idA} gives classical coloring. Introduced in 1850s.
S = L, linear permutations, gives Signed-coloring.
Introduced in 1930s with many applications in context of
psychological models, root systems, Ising model, etc.
S = SA gives DP-coloring. Introduced in 2015 and widely
studied since then.

Any choice of subset of permutations S ⊆ SA leads to a
notion of coloring.

The subset relation over the symmetric group, induces a
partial order on all these notions of coloring with the DP
coloring as the unique maximal element and the classical
coloring as a minimal element.
In fact, it’s a distributive lattice of notions of colorings.



A Poset of Graph Colorings

S = {idA} gives classical coloring. Introduced in 1850s.
S = L, linear permutations, gives Signed-coloring.
Introduced in 1930s with many applications in context of
psychological models, root systems, Ising model, etc.
S = SA gives DP-coloring. Introduced in 2015 and widely
studied since then.

For S ⊆ S′ ⊆ SA, PS(G, k) ≤ PS′(G, k).

PDP(G, k) ≤ . . . ≤ PL(G, k) ≤ · · · ≤ P(G, k); and
PDP(G, k) ≤ . . . ≤ Pℓ(G, k) ≤ · · · ≤ P(G, k).
Exponential lower bound on PDP(G, k) would give an
exponential lower bound on all these (and more) colorings
of G.



Exponentially Many Colorings
Theorem (Dahlberg, K., Mudrock (2024+))
Let k = pr where p is prime, r ∈ N, and k > 2.
Suppose G is a connected n-vertex simple graph with m edges.
If PDP(G, k) > 0 and m ≤ 2n − k−3

k−2 , then

PDP(G, k) ≥ k ((2n−m)(k−2)−(k−3))/(k−1).

Theorem (Dahlberg, K., Mudrock (2024+))
Let k = pr where p is prime, r ∈ N, and k > 2.
Suppose G is a connected n-vertex simple graph with m edges.
If PL(G, k) > 0 and m ≤ (k − 1)n, then

PL(G, k) ≥ kn− m
k−1 .



Polynomial Method

Terrence Tao describes the polynomial method as:

“strategy is to capture the arbitrary set of objects in the zero set
of a polynomial whose degree is in control; for instance the
degree may be bounded by a function of the number of the
objects.”

Then we use algebraic tools to understand this zero set.

This paradigm has been used for breakthrough results in
arithmetic combinatorics, additive combinatorics, number
theory, graph theory, discrete geometry, and more.



Polynomial Method for Exponentially Many Colorings

Theorem (Dahlberg, K., Mudrock (2024+))
Let k = pr where p is prime, r ∈ N, and k > 2.
Suppose G is a connected n-vertex simple graph with m edges.
If PDP(G, k) > 0 and m ≤ 2n − k−3

k−2 , then

PDP(G, k) ≥ k ((2n−m)(k−2)−(k−3))/(k−1).

We define a polynomial over a finite field such that its non-roots
correspond to proper colorings of G. Then we study the
roots/non-roots of this polynomial over a discretized subset of
the field.



A Unification of Theorems and Methods

Theorem (Dahlberg, K., Mudrock (2024+))
Let k = pr where p is prime, r ∈ N, and k > 2.
Suppose G is a connected n-vertex simple graph with m edges.
If PDP(G, k) > 0 and m ≤ 2n − k−3

k−2 , then

PDP(G, k) ≥ k ((2n−m)(k−2)−(k−3))/(k−1).

Application of our lower bounds to families of planar graphs
either improve previously known results or are the first such
known results.

Moreover, this gives a simple-to-apply unified perspective, both
in terms of the statement and the underlying method, for many
notions of colorings applied to sparse graphs without requiring
any topological assumptions.



An Example of Our Applications

Theorem (Dahlberg, K., Mudrock (2024+))
Let G be an n-vertex planar graph, and k be a power of prime.

1 If G has no cycle of length in {4,5,6,7,8}, then
PDP(G, k) ≥ k

n
5

k−2
k−1−1 for k ≥ χDP(G).

2 If G has no cycle of length in {4,5,6,9}, then
PDP(G, k) ≥ k

n
11

k−2
k−1−1 for k ≥ 3. In particular, PDP(G,3) ≥ 3

n
22−1.

3 If G has no intersecting triangles and no cycle of length in
{4,5,6,7}, then PDP(G, k) ≥ k

2n
13

k−2
k−1−1 for k ≥ 3. In particular,

PDP(G,3) ≥ 3
n
13−1.

4 If G has no cycle of length in {4,5,6}, then
PDP(G, k) ≥ k

n
11

k−2
k−1−1 for k ≥ 4. In particular, PDP(G,4) ≥ 3

n
33−1.

5 If G has no cycle of length in {4,5,7,9}, then
PDP(G, k) ≥ k

2n
13

k−2
k−1−1 for k ≥ 3. In particular, PDP(G,3) ≥ 3

n
22−1.



What would you like to work on?

Come join the fun!


